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Nonrelativistic Green’s Function for Systems
With Position-Dependent Mass

A. D. Alhaidari?!
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Given a spatially dependent mass, we obtain the 2-point Green'’s function for exactly
solvable nonrelativistic problems. This is accomplished by mapping the wave equation
for these systems into well-known exactly solvable dmger equations with constant
mass using point canonical transformation. The one-dimensional oscillator class is
considered and examples are given for several mass distributions.
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1. INTRODUCTION

Quantum systems with spatially dependent effective mass were found to be
very useful models for studying the physical properties of various microstructures
and semiconductor interfaces in condensed matter. Special applications of these
models are carried out in the investigation of electronic properties of semicon-
ductors (Bastard, 1988), quantum wells and quantum dots (Harrison, 2000; Serra
and Lipparini, 1997)3He clusters (Barrancet al,, 1997), quantum liquids (de
Saavedrat al., 1994), graded alloys and semiconductor heterostructures (see, for
example, Einevoll, 1990; Einevadt al., 1990; Galbraith and Duggan, 1988; Gora
and Williams, 1969; Morrow, 1987a,b; Trzeciakowski, 1988; Von Roos, 1983; Von
Roos and Mavromatis, 1985; Weisbuch and Vinter, 1993; Young, 1988ic.

These applications stimulated a lot of work in the literature on the development
of methods and techniques for studying systems with mass that depends on po-
sition. Recently, several contributions have emerged that give solutions of the
wave equation for such systems. The one-dimensionab8atgér equation with
smooth mass and potential steps was solved exactly by @tkby (1998, 1999).

The formalism of supersymmetric quantum mechanics was extended to include
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position-dependent massd@il et al, 2002; Plastinet al,, 1999). Shape invari-

ance was also addressed in this setting and the energy spectra were obtained for
several examples. A class of solutions was obtained explicitly for such systems
with equispaced spectra (Samani and Loran, 2003). Coordinate transformations in
supersymmetric quantum mechanics were used to generate isospectral potentials
for systems with position-dependent mass (Milaoamd IkovE, 1999). The or-

dering ambiguity of the mass and momentum operators and its effect on the exact
solutions was addressed by de Souza Dutra and Almeida (2000) where several
examples are considered. so(2,1) Lie algebra as a spectrum generating algebra and
as a potential algebra was used to obtain exact solutions of the effective mass wave
equation (B. Roy and P. Roy, 2002). Point canonical transformation (PCT) was
recently used to obtain the energy spectra and wave functions for a large class of
problems in one and three dimensions (Alhaidari, 2002). A class of quasi-exactly
solvable problems with effective mass was presented hydtal. (2002) where

the wave functions are obtained in terms of orthogonal polynomials satisfying
mass dependent recurrence relation.

In all work cited above the main concern was in obtaining the energy spectra
and/or wave functions for these systems once the position-dependent mass function
is given. Moreover, exact solvability requirements result in constraints on the
potential functions for the given mass distribution. On the other hand, the Green'’s
functions for such systems, which are of prime significance in the calculation of
physical processes, did not receive adequate attention. We are aware of only one
contribution that dealt with Green’s functions for systems with position-dependent
mass: In 1995, Chetouani, Dekar, and Hammann used path integral formulation
to relate the constant mass Green’s function to that of position-dependent mass
(Chetouaniet al, 1995). This was done on a formal level with explicit results
in the two cases of step and rectangular-barrier potential and mass functions. In
this article, we extend the PCT method used for obtaining the energy spectra
and wave functions of such systems (Alhaidari, 2002) to the calculation of the
2-point Green’s function. The basic idea behind the PCT method is as follows
(see, for example, Bhattacharjie and Sudarshan, 1962; Goldstein, 1986; Junker,
1990; Manning, 1935; Montemayor, 1987; Pak an#/8én, 1984). Starting with
a problem whose solution (exact, quasi-exact, or conditionally exact) is known,
then applying to it coordinate transformation that preserves the canonical form
of the wave equation will map it into other solvable problems. The canonical
constraint on the coordinate transformation generates classes of these solvable
problems.

In Section 2, we start with the one-dimensional time-independeno8ityér
equation satisfied by the Green’s function for a system with constant mass (the ref-
erence problem). Applying to it PCT maps itinto the wave equation for the Green’s
function of a system with position-dependent mass. The canonical constraint de-
fines the coordinate transformation in terms of the given mass function. It gives,
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as well, the potential functions for solvable systems with this position-dependent

mass that belong to the class of the reference (constant mass) problem. A cor-
respondence among the physical parameters of the two problems will also be
generated. In Section 3, the formalism is implemented on the one-dimensional

oscillator class and examples are given for several mass distributions.

2. ACTION OF THE PCT MAP ON THE GREEN’S FUNCTION

The momentum operator no longer commutes with the mass since the latter
depends on position. In the majority of work done on the subject the following
symmetric ordering of mass and momentum, in the kinetic energy part of the
Hamiltonian, is adopted almost unanimously:

H =%[ﬁﬁﬁ>}+va‘)=—;—r;[%%ﬂv(?) (2.1)

wherem(f) and V() are real functions of the configuration space coordinates.
Using atomic unitsrfiy = h = 1), thiswill resultin the following time-independent
wave equation in one dimension

d> md

— - ——=-2m[V(x) — E X)=0 2.2

e~ gy~ 2mveo - E1{ 600 2.2

whereE is the energy eigenvalue and = dm/dx. The Green'’s function (resol-
vent operatorye associated with this problem is formally defined bBs{ E)*,
whereE does not belong to the discrete spectrum of the HamiltoHialh satisfies
the following inhomogeneous equation:

{ ¢ md Ve - E]} ge(x, X) = 2ms(x —X)  (2.3)

On the other hand, the one-dimensional equation satisfied by the 2-point Green’s
function for a system with constant mass, potential functipand energy¥ reads

2
{dd—y2 —2[V(y) - 5]} Ge(y, y) =25(y - Y) (2.4)

We apply to this last equation the following transformation
y=aX),  Ge(y,y) = p(X)ge(x, X)p*(X) (2.5)

If the result is a mapping into Eq. (2.3), then this transformation will be referred
to as “PCT.” Now the action of (2.5), for real functions, on Eq. (2.4) maps it into
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the following equation:

d2 / " d 1" "
(e (25 -3) s (B -5 8) - 2@rtviaeo - a1 aetx. 0

2
— (a0~ a(R)

By identifying this with Eq. (2.3) and using the relatiqfd(q(x) — q(x)) = §(x —
X), we obtain the following conditions on the transformation (2.5) to be a PCT:
p(x) = /q'/m (2.6)

V(x) - E = (q)2

St P - F@)] @)

whereF(2) = 2"/z— g(z//z)z. Given a position-dependent mas), eq. (2.7) is

a constraint relating the potential functigiix) to the transformation functio(x)

for a given class defined by the reference poteig). Therefore, for each choice
of potentialV (x) there will be an associated PCT functipix) satisfying eq. (2.7).
Onceq(x) is determined then so [¥x) asitis given by eq. (2.6). Consequently, the
Green’s functiongg (x, x) for the position-dependent mass system will be given
by (2.5) in terms of the known reference Green’s functigity, y) as

ge (X, X) = /m)M(X)/q' (X)q' (X)Ge (a(x), q(X)) (2.8)

Moreover, a correspondence map will also be generated by eq. (2.7) relating the
physical parameters of the reference problem (€)dq those of the variable mass
problem (e.g.E).

Our strategy for solving the constraint eq. (2.7) is by choosing a PCT function
g(x) that will result in a position-independent term on the right side of Eq. (2.7),
which will be identified with the constant energy tenon the left. To this end
we consider the following two possibilities:

(@) The firstis ¢')?> = m giving the PCT functiomj(x) =  u(X), wherer is
a length scale positive parameter and

() = (1/7) / J/mx) dx (2.9)

For a given mass distributiom(x), this choice of PCT function, when
substituted in Eq. (2.7), results in the following energy and potential
function:

E=¢

V() = V(rux)) + g~ Gm(x) (2.10)

1
8m(x)
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whereG(2) =7"/z— %(z//z)z. Itwill also give the following sought-after
2-point Green'’s function:

ge(x, X) = [MEIME)]Y* Ge(r u(x), T(X) (2.11)

(b) The second PCT function is obtained by taking)QV(q) = +m/o?,
where o is another real parameter. This choice giv@x) = R!
(tu(x)/o), whereR(y) = [+/£V(y)dy, and results in the following:

E = F1/02

E/o? n
V(a(x)  8m(x)
L1 V"(q(x»_gv[wq(x))r
8s2V(q(x) | V(@) 4 [ V(ax)

ge(x, X) = o [ME)ME)V @V (@CNIY*Ge(@(x), a(¥)  (2.12)

whereV’ = dV(q)/dg. Requiring that the frst term in the potential ex-
pression above be independent of energy (throwyhvill result in a
constraint that relates the parameteto the reference energy. How-
ever, the last term iV (x) will always be independent ef. This is due
to the fact that this term comes from(q’) in the general relation (2.7),
which is homogeneous i with zero degree.

V(X) =F

G(m(x))

Itis to be noted, however, that other choices|©f) might also be found that
could produce a constant term on the right-hand side of Eq. (2.7), thus resulting in
other solutions. However, we are contented here with the two classes of solutions
obtained above. In the following section we use this development to obtain the
nonrelativistic 2-point Green’s function for several systems with different position-
dependent mass that belong to the oscillator class.

3. OSCILLATOR CLASS GREEN’S FUNCTIONS

Inthis section we apply the PCT method development above to obtain the non-
relativistic 2-point Green’s function for several systems with position-dependent
mass in the oscillator class whevéy) = %a)"’y2 andw is the oscillator frequency.

In this case, the PCT choicq'}> = m givesq(x) = o~ *u(x), wherepu(x) is the
dimensionless integral in (2.9) with the length scale parametaken equals to
1/w. The potential function obtained using Eq. (2.10) is

1

V() = S0P + S

G(m(x)) @1
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On the other hand, the PCT choicey)fV(q) = m/c? gives q(x)? =
(2v2/0 w®)11(x) and results in the following potential function by using Eq. (2.12)

a)2
5/ﬁa 1 G(m() — 3

wi(X) 8m(x) 32 1u(x)2

To eliminate the energy dependence in the first term of this potential, we require
thato be linearly proportional t&. From dimensional arguments and using the
available parameters in the problem, we redefiriso = (v/2/A0°%)E, wherei

is a dimensionless real parameter. Consequently, for this PCT choice, which now
readsq(x)? = (2r/€)u(x), Eq. (2.12) gives the following energy, potential, and
Green’s function:

V(X)=—

1
E = —21%/€?

3
V(0 = S0t - et + 8—()G(m(x))

ge(x, X) = v20(=2E) /mx)mE)u()u(]*Gs (@), ax)  (3.2)

Now to proceed beyond this point, we need to compute the reference Green’s
functionG¢(y, y) for the constant mass one-dimensional oscillator. This Green’s
function is well known. For a recent review, one may consult the worRarhaj

et al.(2002). In one of its representations, we could write it as

Ge(y, §) = iwg<y<)w;<y>) (3.3)

whereys (y< ) is the larger (smaller) of andy, ‘ﬁg (y) are two mdependent solu-
tions of the Schwdinger wave equatiofd?/dy? — 2[V(y) — E]}¥Z(y) = 0 which
are regular at the boundary limits g (y<), respectively. The WronskiaWy of
these two solutions is written as

d% ) dlﬁg* )

=v&(y) (3.4)

—Ye(y)
whichis independent of as can be verlfled by dlfferentlatlng with respecytand
using the wave equation. The explicit form@&f(y, y) depends on whether the one-
dimensional configuration space is taken to be the whole regy lin¢—oo, +00)
or only half the Iiney € (0, 400) (Samajet al,, 2002). For the whole line it reads

3 & 1
e = 7 (i 52) 75
1/4

£
I:Mg/sz 1/4(a) v2) + ?F <4 2w2> W5/2w2,1/4(602)’3 )]

XWe j242.1/a(@0?y2) (3.5)
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However, in the case of the semi-infinite real ling, X 0) we write it as
follows:

3 € 1 2,,2 2,,2
gs(y y) = \/— > <Z - Z—a)2> \/—y—yMg/sz,lm(w YEIWe 202, 1/4(@°YS)
(3.6)
wherel is the gamma function\, , andW, , are the Whittaker functions of the
first and second kind, respectively (Bateman ancebigd1953; Buchholz, 1969;
Gradshtein and Ryzhik, 1980; Magnessal, 1966). They are defined in terms of
the confluent hypergeometric functions as

1
Map(2) = 22 e?2Fi(b—a+ > 2b+1;2)

['(—2b) I'(2b)
Wab(2) = ————Map(@ + ———— My, _n(Z 3.7
a,b() F(%—b—a) a,b() F(%+b—a) a, b() ( )
Substituting the above reference Green’s functions (3.5) and (3.6) into either
one of the two formulas foge(x, X) in Eq. (2.11) or (3.2) gives the sought-
after Green’s functions. That is, we end up with the following two
possibilities:

(@) q(x) = o~ tu(x):
V(x) = 30°1(x)* + U (x)

2 E_\ [mx)m()]¥/
Gt = ZT (3 - 5) DS

X [Mej202,1/a(n(%<)?) + 1/4 T (73— 22)

5 (3.8a)
X We 202, 1/4(1(%<) )]WE/ZwZ,l/4(M(X>) )
Ge(x, X) = Zr (3 - %)%
X M 202, 1/a(11(X< )Y We 202, 1/a(14 (%> )?)
whereU (x) = 8m1(x) [m’/m — ‘Z‘(m//m)Z]
(b) a(x)? = 2(1/E)u(X):
V) = 50200 - S0P + U )
Ge(x, X) = N2 (g - ﬁ) [moomGor
1/4 s
X[ M ag 17a(0E (X< ) + <4 aE) 3.8

XWi ae, 1/a(0tE (X< ))]Wx/ae,1/4(a5M(X> )
= 1/4
ge(x, %) = T (g _ A) LOLEIL
XM jae, 1/a(@e (X< D)W jae, 1/a(0E (X))
whereag = 2¢/—2E/w.
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Table I. The Mass Functiom(x), the Corresponding Integral(x), and the Potential Component
U(x) = ﬁ(x)[m”/m — %(m’/m)z] for Each of the Four Examples Mentioned at the End of Section 3

m(x) w(X) U(x)
yHx2 P 1 2 (y=1) 3X*+2@2-y)(@x2—y
[ Trn)? ] X+ (y — 1) @ami(ex) @ (T) b+ @023
1 2 7+tanh
1+ tan h@x) V2tanhi[/I+ tanhx)/+/2] ~ G e T h(wx)i”ccfgf])@x)]z
2 2

[y + @02 Infx +/y + (@x)?] 2 -
tan hgx)>2 In[cos hx)] —2-[sinh(wx)~2 + (5/4) sin hgx) ]

Note.w is the length scale parameter gnds a dimensionless parameter.

Finally, we give several examples in a tabular form (Table I) for systems with
different position-dependent mass. For each system we write down the dimension-
less integral(x), which is needed for the calculation of the potentials and Green’s
functions in (3.8a) and (3.8b). The table also lists the potential compahent
for each system. Our criterion for the selection of these mass distributions is that
the square root ain(x) is analytically integrable so that(x) is easily attainable
by using Eqg. (2.9). Moreover, we made an attempt to include mass functions that
are frequently used in the literature. The mass distribution in the first example
was studied by Plastinet al. (1999), Gntil et al. (2002), and B. Roy and P. Roy
(2002). The second example represents a smooth mass step that becomes abrupt

-4 -2 0 +2 +4

Fig. 1. The mass as a functions of position for the
third example (third row in Table 1). In the figure
o = 1.0 (in arbitrary units) and the dimensionless
parameter is assigned the valyes= 0.2, 0.5, 1.0,
2.0, 5.0, which are shown on their respective traces.
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asw becomes large. This example was treated by Dekat. (1998, 1999) but

for a potential that has the same shape of a smooth step. Here, exact solvability
gives two systems with this mass step but for potentials that differ from the one in
the work of Dekaet al. (1998, 1999). Example 3 is for asymptotically vanishing
mass with a maximum value of ¥ at the origin. The mass in the fourth example

is asymptotically flat with the value = 1 but with a dip in the neighborhood of

the origin. We show graphically, in Figs. 1 and 2, the mass and the two potential

12 T

8 \ V) _

-2
~4 -2 0 +2 +4
X

Fig. 2. The two potential function for the third example
with the parameter values given in the caption of Fig. 1.
The potential functions given by Eg. (3.8a)/Eq. (3.8b)
was used to produce Figs. 2(a) and (b), respectively.
We tooki = 2.0 in Fig. 2(b).
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functions of the third example for several values of the dimensionless parameter
y while keeping the other parameters fixedvat 1.0 andi = 2.0.

In conclusion we should point out that finding the Green’s function for other
potential classes is also possible. The Coulomb, Morse, Scarf,asuhPTeller,
potentials are among such classes. The three-dimensional problem could as well,
be treated using the PCT method as outlined in our earlier work (Alhaidari, 2002).
Furthermore, the same formalism could, in principle, be extended to include non-
analytic potential classes.
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